10.8 . Query Evaluation | 501

I

Figure 10.6

Decomposition of a query in the form of a tree.

Q
| .
|
1 T
| . |
@ 0 @ Qi0
Q3 Q6 Qu - Q12
Q4 Qs

tution 1s to be performed. The objective of the optimization is to minimize the esti-
mated costs.

Access Aids in N-Variable Expressions

10.8.4

The presence of access aids and the commonality of atiributes can be used to advan-
tage in the evaluations of multiple variable queries. Let us consider, for instance, the
three-variable query, U = R D<I'S DI T. We car create indexes on the joining
attributes in the join R <1 S for R and S DI T for T, if they do not already exist.
If these indexes have to be created, access to the refations-R-and T is involved, plus
the cost of writing the indexes to secondary storage if insufficient space exists in
main memory. Subsequently, the tuples of S are accessed. For each tuple of S, the
required tuples from R and T are determined by using the values of the joining
attribute and the indexes for R and T. In this manner, the threé-\yay join could be
evaluated.

The cost of this method is that of access to tuples of relation S ang the required
tuples of R and T, plus the cost of accessing the indexes. If the index must be
created, the cost also entails the overhead of creating the indexes, plus access to each
of the three relations followed by the selected tuples from the relations Rand T.

Access Plan

Once the method of evaluating various operations is determined, the steps involved
in combining the query components to deduce the final results have to be planned.
Generating an optimal access plan is a stepwise process done in conjunction with the
query transformation operation. In generating an access plan a decision has to be
made regarding which indexes should be generated and which of the existing data
structures should be used. , :

Thapter 10 - - Query Processing

10.4

10.8

10.6

10.7

10.8

10.9
10.10

10.11

10.12

Bibliographic Notes

Repeat Exercise 4.12 from Chapter 4, giving both an optimal relational algebra expression
and the corresponding query tree.

Consider the computation of the join R(A,B,C) and S(B,C.D,). Suppose R has 1,000 tuples
stored 30 tuples per disk block and S has 10,000 tuples stored 40 tuples per disk block.
There is space in the main memory for 3 buffers-for relation R and 5 buffers for relation S.
What is the number of disk accesses made f the relations are joined using the nested loop
method?

Indicate if each of the folowing equivalences are valid, without any knowledge about the
relation schemes of R and S. If valid, how could they be used in query modification to
improve its evaluation?
(m op(R—S) = opR — 0pS
(b) m(R—S)==mR — mpS
Given R(A,B,C), S(B,C,D), and T(C,D,E), draw the query tree for each of the following.
queries and apply optimization procedures to it.
(a)' O'sz('ITAgc(R N S) N ‘ﬂ'Agc(R M T))
(b) a5 -n(TMasR) D WapS) — Tanc(Gp=alR D>aT)
Consider the following query on the database discussed in this chapter.
select S.Std#, S.Std_Name
from STUDENT s,Grade g,Registration r, COURSE c¢,COURSL ct
where s.Std# = g.Std# and
g.Course# = c.Course# and
¢.Course_Name = ‘Database’ and
g.Grade = A and
S.Sd# = r.Std# and

cl.Course# = r.Course# and
cl.Course_Name = ‘Database Design’

Assuming that the size of the relations are as indicated in the text, find the best strategy to
evaluate this query.

Generate an optimal query tree for each query of Exercise 5.10 of Chapter 5.

15 1t possible to use algebraic modification to convert the first relational algebraic version of
the query in Section 10.2 to the third version? If so, depict a sequence of query trees
showing each step of the modification process. '

Consider the different access strategies (indexing and hashing). State how the availability of
such access aids influences query processing.

Modify the algorithm for nested joins using block access wherein the join condition involves
more than one attribute from each relation.

Wong and Youssefi (Wong 76) introduced the decomposition technique, Selinger et al. (Seli
79) describe access path selection, and Kim (Kim 82) describes jbin evaluation strategies.
Techniques for guery improvement are presented in Hall (Hall 76). Some join minimization
techniques-are presented in the textbooks by Maier (Maie 83) and Ullman (Ullm 82). Query'
evaluation algorithms are presented inBlasgen and Eswaren (Blas 77) and Yao (Yao 79). Join
indexes for a two-variable join are presented in Valduriez (Vald 87). When.two or more

10.12 Summary 309

relations are to be joined, the use of a composite B-tree—based index has been shown 'to be
advantageous (Desa, in press, Desa 89). A survey of query processing techniques is given by
Jarke and Kock (Jark 84). The distributed query processing survey by Yu and Chang (Yu 84)
\Iso considers techniques useful in centralized database systems.

Bibliography

(Blas 77) M. W. Blasgen & K. P. Eswaren, “‘Storage and Access in Relational Databases,’’ IBM Systems
Journal 16, 1977.

(Desa 89) B.C. Dcsai, “*Performance of a Composite Attribute and Join Index,’” JEEE Trans. on Software
Engineering 15(2), February 1989, pp. 142-152.

(Desa) B. C. Desai, F. Sadri, & P. Goyal, ‘*Composite B-tree: An Access Aid for Query Processing and
Integrity Enforcement,”” Computer Journal (in press). '

(Hall 76) P. A. Hall, *‘Optimization of a Single Relational Expression in a Relational Database System,”” IBM
Journal of Research and Development 20, pp. 244-257.

(Jark 84) M. Jarke & J. Koch, *‘Query Optimization in Database Systems,”” ACM Computing Surveys (162),
1984, pp. 111-152.

(Kim 82) W. Kim, “‘On Optimizing SQL-Like Nested Query,”” ACM Transactions on Database Systems 3, pp.
443-469.

(Maie 83) D. Maier, Theory of Relational Databases. Rockville, MD: Computer Science Press, 1983.

(Seli 79) P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, & T. G. Price, *‘Access Path
Selection in a Relational Database Management System,’’ Proceedings ACM SIGMOD Intl.
Conf. on Management of Data, 1979, pp. 23-34.

(Ullm 82) J. D. Uliman, Principles of Database Systems. Rockville, MD: Computer Science Press, 1982.

(Vald 87) P. Valduriez, “*Join Indices,”” ACM Transactions on Database Systems 12(2), June 1987, pp. 218-
246.

(Wong 76) E. Wong, & K. Youssefi, ‘‘Decomposition—A Strategy for Query Processing,”” ACM Transactions
on Database Systems 1(3), 1976, pp. 223-241.

(Yao 79) S. B. Yao, ‘‘Optimization of Query Evaluation Algorithms.’’ ACM Transactions on Database Systems
4(2), 1979, pp. 133-155.

(Yu 84) C. T. Yu & C. C. Chang, “‘Distributed Query Processing,”” ACM ‘Computing Surveys 16(4), December
1984.

Contents

(‘/2(‘1/)[(’/‘ 114 Reliability
11.1.1 Types of Failures
Hardware Failure

Software Failure
Storage Medium Failure
Implementation of Stable Storage
11.1.2 Types of Erors in Database Systems and Possible
Detection Schemes
11.1.3 Audit Trails
. 11.1.4 Recovery Schemes

11.2 Transactions
11.2.1 States of a Transaction
11.2.2 Properties of a Transaction
11.23 Failure Anticipation and Recovery

11.3 Recovery in a Centralized DBMS

O - 11.3.1 Logs
e .-Re-covery 1132 Checkpoints
ST 11.3.3 Archival Database and Implementation of the Storage
st Hierarchy of a Database System
- 11.3.4 Do, Undo, and Redo
Transaction Undo
Transaction Redo
Global Undo
Global Redo
11.4 Reflecting Updates onto the Database and
Recovery

11.4.1 Update in Place

1142 Indirect Update and Careful Replacement
Reflecting Updates to the Database via Shadow
Page Scheme and Recovery
Reflecting Updates to the Database via Logs and
Recovery

11.5 Buffer Management, Virtual Memory, and
Recovery

11.6 Other Logging Schemes
11.7 Cost Comparison
11.8 Disaster Recovery

11.1 _ Reliability 511

Wi

A computer system is an electromechanical device subject to failures of various
types. The reliability of the database system is linked to the reliability of the com-
puter system on which it runs. In this chapter we discuss recovery of the data con-
tained in a database system following failures of various types and present the differ-
ent approaches to database recovery. The types of failures that the computer system
is likely to be subjected to include failures of com'}])onents or subsystems, software
failures, power outages, accidents, unforeseen situations, and natural or man-made
disasters. Database recovery techniques are methods of making the database fault
tolerant. The aim of the recovery scheme is to allow database operations to be re-
sumed after a failure with minimum loss of information at an economically justifiable
cost. We concentrate on the recovery of centralized database systems in this chapter;
recovery issues of a distributed system are presented in chapter 15.

Reliability

reliable operation is attained when all components of the system work accord:
specifications. The failure of a system occurs when the system does not function
according to its specifications and fails to deliver the service for which it was in-
tended. An error in the system occurs when a component of the system assumes a
state that is not desirable; the fact that the state is undesirable is a subjective judg-
ment. The component in question is said to be in an erroneous state and further use
of the component will lead to a failure that cannot be attributed to any other factor.
A fault is detected either when an error is propagated from one component to another
or the failure of the component is observed. Sometimes it may not be possible to
attribute a fault to a specific cause. Furthermore, errors-such as logical errbrs in a
program are latent as long as they do not manifest themselves as faults at some '
unspecified time. A fault is, in effect, the identified or assumed cause of an error. If
an error is not propagated or perceived by another component of a system or by an
user, it may not be considered as a failure.

Consider a bank teller who requests the balance of an account from the database
system. If there is an unrecoverable parity error in trying to read the specific infor-
mation, the system returns the response that it was unable to retrieve the required
information; furthermore, the system reports to a system error log that the error oc-
curred and that it was a parity error. The cause of the parity error could be a fault in
the disk drive or memory location containing the required information; or the prob-
lem could be traced to poor intercohnection or noise on the communication lines. We
cannot rule out the fact that the parity checking unit itself may be defective.

For a database system (or for that matter, any other system) to work correctly,
we need correct data, correct algorithms to manipulate the data, correct programs
that implement these algorithms, and of course a computer system that functions
correctly. Any source of errors in each of these components has to be identified and
a method of correcting and recovering from thesg errors has to be designed in the
system. To ensure that data is correct, validation checks have to be incorpurated for

. data entry functions. For example; if the age of an employee is entered as too low

814 Chapter 11 Recovery

Poor quality control: This could include undetected errors in entering the pro-
gram code. Incompatibility of various modules and conflict of conventions between
versions of the operating system are other possible causes of failure in software.

Overutilization and overloading: A system designed to handle a certain load
may be swamped when loading on it is exceeded. Buffers and stacks may overrun
their boundaries or'be shared erroneously.

Wearout: There are no known errors caused by wearout of software: software
does not wear out. However, the usefulness of a software system may become ob-
solete due to the introduction of new versions with additional features.

8 Storage Medium Failure

Storage media can be classified as volatile, nonvolatile, and permanent or stable.

Volatile storage: An example of this type of storage is the semiconductor mem-
ory requiring an uninterruptable power source for correct operation. A volatile stor-
age failure can occur due to the spontaneous shutdown of the computer system,
sometimes referred to as a system crash. The cause of the shutdown could be a
failure in the power supply unit or a loss of power. A system crash will result in the
loss of the information stored in the volatile storage medium. One method of avoid-
ing loss of data due to power outages is to provide for an uninterruptable power
source (using batteries and/or standby electrical generators). Another source of data
loss from volatile storage can be due to parity errors in more bits than could be
corrected by the parity checking unit; such errors will cause partial loss of data.

Nonvolatile storage: Examples of this type of storage are magnetic tape and
magnetic disk systems. These types of storage devices do not require power for
maintaining the stored information. A power failure or system shutdown will not
result in the loss of information stored on such devices. However, nonvolatile storage
devices such as magnetic disks can experience a mechanical failure in the form of a
read/write head crash (i.e., the read/write head comes in contact with the recording
surface instead of being a small distance from it), which could result in some loss of
information. It is vital that failures that cause the loss of ordinary data should not
also cause the loss of the redundant data that is to be used for recovery of the ordi-
nary data. One method of avoiding this double loss is to store the recovery data on
separate storage devices. To avoid the loss of recovery data (primary recovery data),
one can provide for a further set of recovery data (secondary recovery data), and so
‘on. However, this multiple level of redundancy can only be carried to an economi-
cally justifiable level.

Permanent or Stable storage: Permanency of storage, in view of the possibility
of failure of the storage medium, is achieved by redundancy. Thus, instead of having
a single copy of the data on a nonvolatile storage medium, multiple copies of the
data are stored. Each such copy is made on a separate nonvolatile storage device.
Since these independent 'storage devices have independent failure modes, it is as-
sumed that at least one of these multiple copies will survive any failure and be
usable. The amount and type of data stored in stable storage depends on the recovery
scheme used in the particular DBMS. The status of the database at a given point in
time is called the archive database and such archive. data is usually stored in stable
storage. Recovery data that would be used to recover rfom the loss of volatile as
rv;’ell/a’s"'nonvqlatile storage is also stored on stable storage. Failure of permanent

i1 Reliability . 515

Implementation of Stable Storage

11.1.2

storage could be due to natural or man-made disasters.. A manually assisted database
regeneration is the only possible remedy to permanent storage failure. However, if
multiple generations of archival database are kept, loss of the most recent generation,
along with the loss of the nonvolatile storage, can be recovered from by reverting
the most recent previous generation and, if possible, manually regenerating the
recent data.

Stable storage is implemented by replicating the data on a number or separate no
volatile storage devices and using a careful writing scheme (described below). Errors
and failures occurring during transfer of information and leading to inconsistencies
in the copies of data on stable storage can be arbitrated.

A write to the stable storage consists of writing the same block of data from
volatile storage to distinct nonvolatile storage devices two or more times. If the writ-
ing of the block is done successfully, all copies of data will be identical and there
will be no problems. If one or more errors are introduced in one or more copies, the
correct data is assumed to be the copy that has no errors. If two or more sets of
copies are found to be error free but the contents do not agree, the correct data is
assumed to be the set that has the largest number of error-free copies. If there are
the same number of copies in two or more such identical sets, then one of these sets
is arbitrarily assumed to contain the correct data.

Types of Errors in Database Systems and
Possible Detection Schemes

Errors in the use of the database can be traced to one of the followiny causes: user
error, consistency error, system error, hardware failure, or external environmental
conditions.

User error: This includes errors in application programs as well as errors made
by online users of the database. One remedy is to allow online users limited access
rights to the database, for example, read only. Any insertion or update operations
require that appropriate validation check routines be built into the application pro-
grams and that these routines perform appropriate checks on. the data entered. The
routines will flag any values that are not valid and prompt the user to correct these
erTors.

Consistency error: The database system should include routines that check for
consistency of data entered in the database. Due to oversight on the part of the DBA,
some of the required consistency specifications may ‘be left out, which could lead to
inconsistency in the stored data. A simple distinction between validity and consis-
tency errors should be made here. Validity establishes that the data is of the correct
type and within the specified range; consistency establishes that it is reasonable with
respect to itself or to the current values of other data-items in the database.

System error: This encompasses errors in the database system or the operating
system, including situations such as deadlocks (sce Section 12.8). Such errors are
fairly hard to detect and require reprogramming the erroncous components of the

518

Chapter 11 Recovery

Procedure Modify_Enrol (Stugeni_Name, Course, New_Grade);
define action update ENROL(Student_Name, Course, Grade)as
{* action update ENROL is defined as the next two
statements *} '
begin
get for update ENROL where
ENROL.Student_Name = Student_Name and
ENROL.Course = Course,
ENROL.Grade : = New_Grade;
- end
if error
then
rollback action update ENROL;{* do not output ENROL *}
else
commit action update ENROL;{* output ENROL *}
end Modify_Enrol;

In this program the comment indicates the definition of the action update EN-
ROL of the record for a given student in a given course; this action is being refer-
enced later with the keywords commit and rollback. The statements defined for the
update operation are assumed to modify a temporary copy of the selected portion of
the database (the main memory copy of the block of nonvolatile storage containing
the tuple for the relation ENROL). Here we are using error to indicate whether there
are any errors during the execution of the statements defined for the action update
ENROL. If there were any errors, we want to undo any changes made to the database
by the statements defined for the update action. This involves simply discarding the
temporary copy of the affected portion of the database. The database itself is not
changed if a temporary copy of the database is being used. If there were no errors,

- we want the changes made by the update operations to become permanent bv being

reflected in the actual database. Y

Figure 11.1 shows the successive states of the database svstem at different
points of the execution of this program, with the change of student Jones’s grade in
course Comp353 from in progress to A, as shown in part d of the figure. In case
there are any errors by the program, it ignores any modifications and the record for
Jones remains unchanged as shown in part e.

The program unit Modify_Enrol given above consists of a number of state-
ments, each of which is executed one at a time (each of the statements is compiled
into a number of machine instructions, which are executed one at a time, sequen-
tially). Such sequential execution can be interrupted due to errors. (Interrupts to ex-
ecute the statements of other concurrent programs can also- occur, but we will ignore
this type of interruption for the time being.) In case of errors, the program. may be
only partially executed. However, to preserve the consistency of the database we
want to ensure that the program is executed as a single unit, the execution of which
will not change the consistency of the database. Thus-an interruption of a transaction
following a system detected error will return the database to its state before the start
of the transaction. Such a program unit, which operates on the database to perform
a read operation or an update operation (which includes moditication, insertion, and
deletion), is called a transaction.

112 Transactions 519

Figure 11.1 Database states for program of Section 11.2.

(a) Initial state of the database before
the execution of the Get Enrol statement

Get.Enrol statement

5

: (d) After the commit statement the database

Jones Comp 353 A is permanently changed
T]

Sy
e (e) In case of errors the roliback restores
Jones Comp 353 A the database to the original state by
F ignoring the temporary copy

Main memory

Chapter 11 Recovery

Figure 11.3

Transaction states.

System detects

error Consistent

state

detected
by transaction

Consistent
state

Database
unmodified

A transaction can end in three possible ways. It can end after a commit opera-
tion (a successful termination). It can detect an error during its processing and
decide to abort itself by performing a rollback operation (a suicidal termination).
The DBMS or the operating system can force it to be aborted for one reason.or

another (a murderous termination).
We assume that the database is in a consistent state before a transaction starts.

A transaction starts when the first statement of the transaction is executed; it becomes

active and we assume that it is in the modify state, when it modifies the database.
At the end of the modify state, there is a transition into one of the following states:
start to commit, abort, or error. If the transaction completes the modification state
satisfactorily, it enters the start-to-commit state where it instructs the DBMS to reflect
the changes made by it into the database. Once all the changes made by the trans-
action are propagated to the database, the transaction is said to be in the commit state
and from there the transaction is terminated, the database once again being in a
consistent state. In the interval of time between the start-to-commit state and the
commit state, some of the data changed by the transaction in the buffers may or may
not have been propagated to the database on the nonvolatile storage.

There is a possibility that all the modifications made by the transaction cannot
be propagated to the database due to conflicts or hardware failures. In this case the
system forces the transaction to the abort state. The abort state could also be entered
from the modify state if there are system errors, for example, division by zero or an
unrecoverable parity error. In case the transaction detects an error while in the mod-
ify state, it decides to terminate itself (suicide) and enters the error state and then,
the rollback state. If the system aborts a transaction, it may have to initiate a rollback
to undo partial changes made by the transaction. An aborted transaction that made
no changes to the database is terminated without the need for a rollback, hence there
are two paths in Figure 11.3 from the abort state to the end of the transaction. A
transaction that, on the execution of its last statement, enters the start to commit state
and from there the commit state is guaranteed that the modifications made by it.are
propagated to the database.

11.2 Transactions 823

11.2.2

The transaction outcome can be either successful (if the transaction goes through
the commit state), suicidal (if the transaction goes through the rollback state), or
murdered (if the transaction goes through the abort state), as shown in Figure 11.3.
In the last two cases, there is no trace of the transaction left in the database, and
only the log indicates that the transaction was ever run.

Any messages given to the user by the transaction must be delayed till the end
of the transaction, at which point the user can be notified as to the success or failurg
of the transaction and in the latter case, the reasons for the failure.

Properties of a Transaction

11.2.3

From the definition of a transaction, we see that the status of a transaction and the
observation of its actions is not visible from outside until the transaction terminates.
Any notification of what a transaction is doing must not be communicated, for in
stance via a message to a terminal, until the transaction is terminated. Nor should
any partial changes made by an active transaction be visible from outside the trans-
action. Once a transaction ends, the user may be notified of its success or failure and
the changes made by the transaction are accessible. In order for a transaction to
achieve these characteristics, it should have the properties of atomicity, consistency,
isolation, and durability. These properties, referred to as the ACID test, represent the
transaction paradigm.

The atomicity property of a transaction implies that it will run to completion as
an indivisible unit, at the end of which either no changes have occurred to the data-
base or the database has been changed in a consistent manner. At the end of a
transaction the updates made by the transaction will gg accessible to other trans-
actions and the processes outside the transaction.

The consistency property of a transaction implies that if the database was in a
consistent state before the start of a transaction, then on m;tmnatlon of a transaction
the database will also be in a consistent state.

The isolation property of a transaction indicates that acnons performed by a
transaction will be isolated or hidden from outside the u-ansaotion until the transaction
terminates. This property gives the transaction a measure of relative independence.

The durability property of a transaction ensures that the commit action of a
transaction, on its termination, will be reflected in the databuse. The permanence of
the commit action of a transaction requires that any failures after the-commit opera-
tion will not cause loss of the updates made by the transaction.

Failure Anticipation and Recovery

In designing a reliable system we try to anticipate different types of failures and
provide for the means to recover without loss of information. Some very rare failures
may not be catered to for economic reasons. Recovery from failures that are not
thought of, overlooked, or ignored may not be possible. In common practice, the

528 Chapter 11 Recovery

_Figure 11.8 Checkpointing.

1
. 1
| | 1]
E_ i | 1
l 1
T, Tz | ! Tivs !
H % e N sl
' I
TS Ti+z t 7
| | | 1 |

1 . v
T4 Ti-l |]
4 - | |

. — — ! To
1 |
Tl Ti+l | i
pt et = .
e
;. l J
¥ 1 1
to te) ty
Checkpoint System
Time ---» ---» crash

Let us now see how the system can perform a recovery at time t,. Suppose all
transactions that started before the checkpoint time but were not committed at that
time, as well as the transactions started after the checkpoint time, are placed in an
undo list, which is a list of transactions to be undone. The undo list for the trans-
actions of Figure 11.5 is given below:

‘UNDO List: (T;, Ti+2, Ti+ss Tits, Tise)

Now the recovery system scans the log in a backward direction from the time t,
of system crash. If it finds that a transaction in the undo list has committed, that
transaction is removed from the undo list and placed in the redo list. The redo list
contains all the transactions that have to be tedone. The reduced undo list and the
redo list for the transactions of Figure 11 5 are given below:

REDO LiStl,(TH»dv Titvs, Tiv2
UNDO List: (T;, T;) ‘

' Obviously, all transactions that wer¢ committed before the checkpoint time need
not be considered for the recovery operation. In this way the amount of work re-
quired to be done for recovery from a system crash is. reduced. Without the check-
point scheme, the redo list wiii contain all transactions except T; and T;,¢. A system
crash occurring during the checkpoint operation, requires recovery to be done using
the most recent previous checkp'o,ix"(. "
The recovery scheme déscyi d above takes a pessimistic view about-what has.
been propagated to the databage/at the time of a system crash with loss of volatile
-information.. Such pessimism is adopted both for transactions committed -after a
checkpoint and transactions not committed since a checkpoint. It assumes that the
transactions committed since the checkpoin’ have hot been able .to propagate their
. " modifications to the database and the transactions still in progress have done so.

11.3 Recovery in p Centralized DBMS 529

11.3.3

~ Note that in some systems, the term checkpoint 1s used to denote the correct
state of svstem files recorded explicitly in a backup file and the term checkpointing
is usea 1o denote 3 mechanism used to-zeStore the system files to a previous consistent
state - However, in a system that-uses the transaction paradigm, checkpoint is a strat
egy to rimmmize tie-search of the log and the amount .of undo and-redv required to
recover from a system failure with loss of volatile storage.

Archival Database. and Implementation of the
Storage Hierarchy or @ Database System

Figure:11.6

Figure 11.6 grves the different>sategosies Jf data used in a database system. These
storage ‘types are-sometimesscatled the storage hierarchy. It consists of the archival
database, physical database; awchival lpg, and current log.

Physical database: This is the online copy of the database that is stored in
nonvolatile storage and used By all active transactions.

Current database: The curreit ¥ersion of the database is made up of the phys
ical database plus modifications imtplied by buffers in the volatile storage.

Database storage hierarchy.

Database users

program codé
ind buffers
in volatile
storage

{ Data buffers | -

=

- Physical
. database on
E)nvolat.ile

Archive log
" on stable
storage

532

Chapter 11 Recovery

Transaction Redo

Transuction redo imvolves performing the changes made by a transaction that com-
mitted before a system erash. With the write-ahead log strategy, a committed trans-
actien implies that the log ror the transaction would have begn written to nonvolatile
storage, but the physical database may or may not have been modified before the
system failure. A transaction redo modifies the physical databasc to the new values

. for a committed tramsartion. Since the rego operation. is idempotent, redoing the

. Global Undo

partial or complete-modifications made by a transaction to the physical database will
not. pose a problem for recovery.

Transactions that are partially complete at the dme of a systenr crash with loss of
volatile storage need to be undone by unaoing any changes made by the transaction.
The global undo operation, initiated by the recovery system, involves undoing the
pastial or otherwise updates made by all uncommiitted transactions at the time of a

* system failure.

Global Redu

114

The global redo operation is required for reeovery from failures involving nonvola-
tile storage loss. The archival copy of the database is used and all transactions com-

mitted since the time of the archival copy are redope to obtain a database updated to

a point as close as possible to the-time of the nonvolatile storage loss. The effects of

the transaction in progress at the time of the nonvolatile loss will not be reflected in

the recovered database. The archival copy of the database could be anywhere from

months to days oid and the number of transactions that have to be redone could be

large. The log for the committed transaciems-needed for performing a global redo

operation has to be stored on stable storage so that they are not lost with the loss. of -
nonvolatile storage containing the physical database

Reflecting 'Updates to the Database and
Recovery

Let us assume that the physical-database at the start of a transaction is equivalent to
the current database, i.e., all modifications have been reflected in_the database on
the nonvolatile storage. Under this assumption, whenever a transaction is run against
a database, we have a number of options as to the strategy that will be followed in-
reflecting the modifications made by the transaction as it is executed. The strategies
we will explore are the following:

Update in place: In this approach the modifications appear in the database in.
the original locations and. in the case of a simple update, the new values will replace

the old values.

114 Reflecting Updaics 4o the Database and Recovery - 833

11.4.1

indirect update with careful replacement: In this approach the modifications
ace not made directly on the physical database. Two possibilities can be considered.
The first scheme, called the shadow page scheme, makes the changes on a copy of
that portion of the database being modified. The other scheme is called update via
fog. In this strategy of indirect update, the update vperations of a transaction are
logged and the log of a committed transaction is used te modify the physi
base.

In the following sections we examine. these update schemes in

Update in Place

Figure 11.8

In this scheme (see Figure 11.8) the transaction updates the physical
the modified record replaces the old record in the database on nonvolatile s :
The write-ahead log strategy is used and the log information about the transaction
modifications are written before the corresponding pu#(x) operation, initiated by the
transaction, is performed. Recall that the write-ahead log strategy has the following
requirements:

'1. Before a transaction is allowed to modify the database, at least the undo

portion of the transaction log record is written to the stable storage.

2. A transaction is committed only after both the undo and the redo portion of the
log are written to stable storage.

The sequence of operations for transaction T and the actions performed by the
database are shown in Figure 11.9. The initiation of a transaction causes the start of
the log of its activities; a start transaction along with the identification of the trans-
action is written out to the log. During the execution of the transaction, any output
(in the form of a put by the transaction) is preceded by a lag output to indicate.the
modification being made to the database. This output to the log consists of the rec-
ord(s) being modified, old values of the data items in the case of an update, and the
values of the data items. The old values will be used by the recovery system to undo
the modifications made by a transaction in case & system crash occurs before the

Update in place scheme.

Application

Put
Get

Read

DBMS Buffer

‘Write

Chapter 11 Recovery

———eetRN.

Figuwre 11.10

Modifications with update-in-place scheme.

Projy: Partg: 50_@0

Projs: Part;: 1802(%

e
A

gated to the database. Suppose that before the program was run the,nventory tor
parts Part, and Part, were 400 and 600 respectively; the quantity used by project
Projs of part Part, was 100 and the quantity used by project Proj; of part Part, was
10. The program above was run to transfer 100 units of Part, from inventory. for use
in Projs, followed by the transfer of 10 units of part Part, from inventory to Proj,.
The operations performed by the program are shown in Figure 11.11. The first op-
eration is called transaction Ty; the second operation, T,. Quaqtity_in_Stock is ab-
breviated as Q_in_S and Quantity_to_Date as Q_to_D

Now suppose that while the program above was executing,ithere was a system
crash with loss of volatile storage. Let us consider the various possibilities as to the
progress made by the program and the sequence of recovery operations required
using the information from the write-ahead log.

If the crash occurs just during or after step s,, the log would nave the following
irfformation for the transaction T:

Start of Ty
record Part# = Part,,
old value of Q_in_S: 400
new value of Q_in_S: 300
The recovery process, when it examines the log, finds that the commit trans-
action marker for T, is missing and, hence, will undo the partially completed trans-
action T,. To do this it will use the old value for the modified field of the part record
ideptified by Part, to restore the Quantity_in_Stock field of the part record for Part,
to-the value 400 and restore the database to the consistent state that existed before
the crash and before transaction T, was started.
If the crash occurs after step s, is completed, the recovery system will find an’
end-of-transaction marker for transaction T in the log. The log entry will be as given
below:

Start of Ty
record Part# = Part,,
old value of Q_in-S: 400
new value of Q_in=S: 300
record Project# = Projs '
old value of Q_to_D: 100,
new value of Q_ro_D: 200
Commit Tn

11.4 Reflecting Updates to the Database and Recovery

837

Figure 11.11 The-steps for two transactions.

Step

oL L

S3

S4
Ss
S6

Sg

S10
S10

812

S13

S14
Sis
St6

817

Si8
Si9
S0

Transaction
Action

Start of T,
get(Part,)

" modify(Q-in_S

from 400
to 300)
put(Part,)

get(Projs)

modify(Q_to_D

from-100
to 200)
put(Projs)

Start Commit
End of To
Start of T,
get(Party)
modify(Q—in_$
from 600
to 590)

put (Party)

get(Projz)
modify(Q—to_D
from 50
to 60)
put(Proj)

Start Commit
End of T|

Database

Log Operation Operation
Write(start Transaction To)
Read(Part,)

Write(record for Part# = Part,,
old value.of Q_in_S: 400,
new value of Q_in_S: 300)
Write(Part,)
Read(Projs)

Write(record for Project# = Projs,
old value of Q_to_D: 100,
wmew value of Q_ro_D: 200)

: Write(Projs)

Write(Commit transaction: Tg);

Write(start Transaction T) .
‘Read(Part,)

Write(record Part# = Part,,
old value of Q_in_S: 600,
new value of 0_in_S: 590)
Write(Part,)

Read(Projy).

. Write(record Project# = Proj,

old value of Q_to_D: 50,
new value of Q_to_D: 60)
Write(Proj,)
Write(Commit transaction T,);

Chapter 11 Recovery

 Figure 11.13

Paging scheme.

E————

Page table
address

A

ViR

Page table
Physical blocks

shadow page table and the transaction addresses the database @sing another page
table known as the current page table. Initially, both page tables point to the same
blocks of physical storage. The current page table entrics may change duriny the life
of the transaction. The changes are made whencver the transaction modifies the da-
tabase by means of a write operation. The pages that are affected by a transaction
are copied to new blocks of physical storage and these blocks, along with the blocks
not modified, are accessible to the transaction via the current page table, as shown
in Figure 11.44. The old version of the changes pages remains unchanged and these
pages continge to be accessible via the shadow page table.

The shadow page table contains the entries that cxistea in the page table before
the start of the transaction and points to blocks that were never changed by the
transaction. The shadow page table remains unaltered by the transaction and is used
for unaoing the transaction.

Now let us see how the transaction accesses data during the tune it is active.
The transaction uses the current page table to access the database blogks for retrieval.
Any modification made by the transaction involves a write operation to the database.
The shadow page scheme handles the first write operation to a given page as follows:

Figure 11.44 Shadow page scheme.

_] Changed pages
Current >
page -
/ table
Page table Unchanged pages
address \
Shadow
m' b‘le ! Shadow pages
_____]"—"" (original version of
1
~ changed pages)

' Tt P.
11.4 Reflecting Updates to the Database and Recovery \3“’ ¢ & 'I{? \
©

® A free block or nonvolatile storage is located from the pool of free blocks S
accessible by the database system.

® The block to be modified is copied onto this block.

® The original entry in the current page table is changed to point to this new
block.

® The updates are propagated to the block pointed to by the current page table,
which in this. case would be the newly created block.

Subsequent write operations to a page already duplicated are ‘handled via the
current page table. Any changes made to the database are propagated to the blocks
pointed to by the current page table. Once a transaction commits, all modifications
made by the transaction and still in buffers are propagated to the physical database
‘(i.e., the changes are written to the blocks pointed to by the current page table). The
propagation is confirmed by adopting the current page table as the table containing ..
the consistent database. The current page table or the active portion of it could be in’,
volatile storage. In this case a commit transaction causes the current page table to be
written to nonvolatile storage.

In the case of a system crash, before the transaction commits, the shadow page
table and the corresponding blocks containing the old database, which was assumed
to be in a consistent state, will continue to be accessible. /

To recover from system crashes during the life of a transaction, all we have to
do is revert to the shadow page table so that the database remains accessible after
the crash. The only precaution to be taken is to store the shadow page table on stable
storage and have a pointer that points to the address where the shadow page table is
stored and that is accessible to the database through any system crash.

. Committing a transaction in the shadow page scheme requires that all the mod-
ifications made by the transaction be propagated to physical storage and the current
page table be copied to stable storage. Then the shadow page scheme reduces the
problem of propagating a set of modified blocks to the database to that of changing
a single pointer value contained in the page table address from the shadow page table
address to the current page table address. This can be done in an atomic manner and
is not interrupted by a system crash.

In the case of a system crash occurring any time between the start of a trans-
action and the last atomic step of modifying a single pointer from the shadow page
to the current page, the old consistent database is accessible via the shadow page
table and there is no need to undo a transaction. A system crash occurring after the
last atomic operation will have no effect on the propagation of the changes made by
the transaction; these changes will be nreserved and there is no need for a redo
operation.

The shadow blocks (i.e., the old version of the changed blocks) can be returned
to the pool of available nonvolatite storage blocks to be used for further transactions.

The undo operation in the shadow page scheme consists of discarding the cur-
rent page table and returning the changed blocks te a pool of available blocks.

The advantage of the shadow page scheme is that the recovery from system
crash is relatively inexpensive and this is achieved without the overhead- of logging.

Before we go on to another method of indirect ypdate it is. worth mentioning
some of the drawbacks of the shadow page scheme. One of the main disadvantages
of the shadow scheme is the problem of scattering. This problem is critical in data-

544

Chapter 11 Recovery

11.5

log is indicated by a start transaction marker without a corresponding end transaction
marker. Such partially complete transactions are ignored by the recovery system
since they will not have modified the database.

However, we must distinguish an update made by a partially complete trans-
action from a partial update made from the log of a committed transaction in the
deferred update from the log phase. A partially completed update (updated during
the end of transaction processing after a commit transaction is executed by the pro-
gram controlling the transaction) cannot be undone with the deferred update using
the log scheme; it can only be completed or redone. The only way it can be undone
is by a compensating transaction to undo its effects (as is the case in standard ac-
counting practice).

Buffer Management, Virtual Memory, and
Recovery

The input and output operations required by a program, including a DBMS applica-
tion program, are usually performed by a component of the operating system. These
operations normally use buffers (reserved blocks of primary memory) to match the
speed of the processor and the relatively fast primary memories with the slower
secondary memories and to minimize, whenever possible, the number of input and
output operations between the secondary and primary memories. The assignment and
management of memory blocks is called buffer management and the component of
the operating system that performs this task is usually called the buffer manager.
The goal of the buffer manager is to ensure that as many data requests made by
programs as possible are satisfied from data copied from secondary storage devices
into the buffers. In effect, a program performs an input or an output operation using
get or put statements; the buffer manager will be called on to respond to these input
or output requests. It will check to see if the request for the data can be satisfied by
reading from or writing to the existing buffers. If so, the input or output operation
occurs between the program work area and buffers. If an input request cannot be
satisfied, the buffer manager will have to do a physical transfer between the second-
ary memory and a free buffer and then make the data so placed in the buffer available
to the program requesting the original input operation. A similar scenario will take
place in the reverse order for an outpui. The buffer manager makes a new buffer
available to the program performing a put operation. The buffer manager performs
the physical transfer between the buffer and the secondary memory by means of read
and write operations whenever there is an anticipatzd need for new buffers and none
are available in a pool of free buffers for the current program. For sequential pre-
cessing, the buffer manager can provide higher performance by prefetching the next

block of data and by batching write operations into the commit phase of a trans-
action.

We have assumed so far that the buffer manager uses buffers in physical mem-
ory. However, in a computer system that uses a virtuai memory management
scheme, the buffers are in effect virtual memory buffers, there being an additional
mapping between a virtual memory buffer and the physical memory, as shown in
Figure 11.16. Since the physical memory is managed by the memory management
component of the operating system, a virtual buffer input by the buffer manager may

11.5 Buffer Management, Virtual Memory, and Recovery 545

Figure 11.16 DBMS buffers in virtual memory.

DBMS refers to

. . * Buffers in
: ‘ : virtual W virtual
: . memory
Database and / i B!
work areas
Virtual to
physical
- Buffers in mapping
* physical
mem
o Virtual
Physical memory
memory Er;;\;g)cmem

have been paged out by the memory manager in case there is insufficient space in
the physical memory.

In a virtual memory management scheme, the buffers containing pages of the
database undergoing modification by a transaction could be written out to secondary
storage. The timing of this premature writing back of a buffer is independent of the
state of the transaction and will be decided by the replacement policy used by the
memory manager, which again is a component of the operating system. Thus, the
page replacement scheme is entirely independent of the database requirements; these
requirements being that records undergoing modifications by a partially completed
transaction not be written back and records for a committed transaction be rewritten,
especially in the case of the update in place scheme.

It has been found that the locality of reference property is applicable to database
buffers. To decrease the number of buffer faults, the least recently used (LRU)
algorithm is used for buffer replacement. However, the normal LRU algorithm is
modified slightly and each transaction is allowed to maintain a ceftain number of
pages in the buffer.

The buffering scheme can be used in the recovery system, since it effectively
provides a temporary copy of a database page to which modifications can be directed
and the original page can remain unchanged in the nonvolatile storage medium. Both
the log and the data pages will be written to the buffer pages in virtual memory. The
commit transaction operation can be considered a two-phase opera‘ion called a two-
phase commit. The first phase is when the log buffers are written out (write-ahead
log) and 'the second phase is when the data buffers are written. In case the data page
is being used by another transaction, the writing of that page can be delayed. This
will not cause a problem because the log is always forced during the first phase of
the commit. With this scheme the undo log is not required, since no uncommitted
modifications are reflected in the database.

In sequential processing of the database, the buffer manager prefetches the da-
tabase pages. However, pages of data once used need not follow the locality proy-
erty. A page once accessed ‘is dess likely to be accessed again. Hence, the buffer

Chapter 11 Recovery

all modifications are forced to be written to nonvolatiie storage. However, if all the
modified pages are not forced to be written during the end of transaction processing,
the costs of an undo and a redo are relatively higher. Furthermore, the end of a
transaction is not a checkpoint in this scheme.

It an updatc-in-place scheme is used along with a not stcal and force buffer
scheme where partiatly modified pages are not allowed to be written at any time (the
writing of such maodified pages is delayed till the end of the transaction processing
when all pages are written), then the costs of undo and redo are very low. Again
cach end of a transaction represents a checkpoint.

With an indirect update scheme where the end of the transaction forces all mod-
ified pages to be processed, the cost of the undo and redo are relatively lower.

If the database system defers the propagation of changes to the database until
the commit operation, then in case the transaction is rolled back by the program
controlling it, the changes made by the transaction need not be rolled back. The
rollback operation in this case consists of not propagating the modifications made by
the transaction to the database. The same procedure will apply if the system aborts
the transaction.

Disaster Recovery

Disaster refers to circumstances that result in the loss of the physical/ database stored
on the nonvolatile storage medium. This implies that there will also be a loss of the
volatile storage, and the only reliable data are the data stored in stable storage. The
data stored in stable storage consist of the archival copy of the database and the
archivat log of the transactions on the database represented in the archival copy.

The disaster recovery process requires a global redo. In a global redo the
changes made by every transaction in the archival log are redone using the archival
databasc as the initial version of the current database. The order of redoing the op-
crations must be the same as the original order, hence the archival log must be
chronologically ordered.

Since the archival database should be consistent, it must be a copy of the current
databasc in a quicscent stage (i.e., no transaction can be allowed to run during the
archiving process). The quiescent requirement dictates that the frequency of archiving
be very lows The time required to archive a large database and the remote probability
of a loss of nonvolatile storage result in performing archiving at quarterly or monthly
intervals.. The low frequency of archiving the database means that the number of
transactions in the archival log will be large and this in tumn leads to a lengthy
recovery operation (of the order of days).

A method of reconciling the reluctance to archive and the heavy cost of infre-
quent archiving is to archive more often in an incremental manner. In effect, the
database is archived in a quiescent mode very infrequently, but what is archived at
more regular intervals is that portion of the database that was modified since the last
incremental- archiving. The archived copy can then be updated to the time of the
incremental archiving without disrupting the online access of the database. This up-
dating can-be-performed on a different computer system.

The recovery operation 'consists»uktedoing the changes made by committed
transactions from the archive log on the archive database. A new consistent archive
database copy can be generated during this recovery process.

11.9 Summary 549

Summary

In this chapter we discussed the recovery of the data contained in a database system
after failures of various types. The reliability problem of the database system is
linked to the reliability of the computer system on which it runs. The types of failures
that the computer system is likely to be subject to include that of components or
subsystems, software failures, power outages, accidents, unforeseen situations, and
natural or man-made disasters. Database recovery techniques are methods ot making
the database fault tolerant. The aim of the recovery scheme is to allow database
operations to be resumed after a failure with a minimum loss of information and at
an economically justifiable cost.

In order for a database system to work correctly, we need correct data, correct
algorithms to manipulate the data, correct programs that implement these algorithms,
and of course a computer system that functions accurately. Any source of errors in
each of these components has to be identified and a method of correcting and recov-
ering from these errors has to be designed in the system.

A transaction is a program unit whose execution may change the contents of the
database. If the database was in a consistent state before a transaction, then on com-
pletion of the execution of the program unit corresponding to the transaction the
database will be in a consistent state. This requires that the transaction be considered
atomic: it is executed successfully or, in case of errors, the user views the transaction
as not having been executed at all.

A database recovery system is designed to recover from the following types of
failures: failure without loss of data; failure with loss of volatile storage; failure with
loss of nonvolatile storage; and failure with a loss of stable storage

The basic technique to implement database recovery is by using data redundancy
in the form of logs, checkpoints, and archival copies of the database.

The log contains the redundant data required to recover from volatile storage
failures and-also from errors discovered by the transaction or database system. For
each transaction the following data is recorded on the log: the start of transaction
marker, transaction identifier, record identifiers, the previous value(s) of the modified
data, the updated values; and if the transaction is committed, a commit transaction

marker, otherwise an abort or rollback transaction marker.
The checkpoint information is used to limit the amount of recovery operations

to be done followjng a system crash resulting dngthe loss of volatile storage.

The archival database is the copy of the dafabase at a given time stored to stable
storage. It centains the entire database in a quiescent mode and is made by simple
dump routines to dump the physical database to stable storage. The purpose of the
archival database is to recover from failures that involve loss of nonvolatiie storage.
The archive log is used for recovery from failures involving loss of noavolatile in-
formation. The log contains information on all transactions made on the database
from the time of the archival copy, written in chronological order. Recovery from
loss of nonvolatile storage uses the archival copy of the database and the archival log
to reconstruct the physical database to the time of the nonvolatile storage failure.

Whenever a transaction is run against a database, a number of options can be
used in reflecting the modifications made by thy transactions. The options we
have examined are update in place and indirect update with careful replacement:
the shadow page scheme and the upaate via log scheme are two versions of the
latter.

Chapter 11 Recovery

In the update-in-place scheme, the transaction updates the physical database and
the modified record replaces the old record in the database. The write-ahead log
strategy is used. The log information about the transaction modifications is written
before update operations initiated by the transactions are performed.

The shadow page scheme uses two page tables for a transaction that is going to
modify the database. The original page table is called the shadow page table; the
transaction addresses the database using another table called the current page table.
In the shadow page scheme, propagating a set of modified blocks to the database is
achieved by changing a single pointer value contained in the page table address from
the shadow page table address to the current page table address. This can be done in
an atomic manner and is not interruptable by a system crash.

In the update via log scheme, the transaction is not allowed to modify the da-
tabase. All changes to the database are deferred until the transaction commits. As in
the update-in-place scheme, all modifications made by the transaction are logged.
Since the database is not modified directly by the transaction, the old values do not
have to be saved in the log. Once the transaction commits, the log is used to propa-
gate the modifications to the database. A

The recovery process from a failure resulting in the loss of nonvolatile storage
requires a global redo, i.e., redoing the effect of every transaction in the archival
log, the archival database being used as the initial version of the current database. -
The order of performing redo operations must be the same as the original order,

hence the archival log file must be chronologically ordered.

Key Terms

reliable

failure

error

fault

fault-tolerant system

reliability

mean time between failures
(MTBF)

mean time to repair (MTTR)

system availability
design error

poor quality coatrol
overutilization
overloading

wearout

volatile storage
nonvolatile storage
system crash
permanent or stable storage
read/write head crash
archive database
user error
consistency error

system error

validity

deadlock

audit trail

journal

forward error recovery
backward error recovery
buffer

atompic operation
successful termination
suicidal termination
murderous termination
atomicity

consistency

isolation

durability

log

write-ahead log strategy
checkpoint -

‘transaction-consistent

checkpoint
action-consistént checkpoint
transaction-oriented checkpoint

undo

redo

quiescent

current database
materialized database
do

idempotent
transaction undo
transaction redo
global undo

global redo

update in place
indirect update
shadow page scheme
update via log
indirect page allocation
page table

shadow page table
current page table
buffer management
buffer manager
virtual memory
memory. manager

